Networks in biology

April 23, 2018

Birgit Sollie

Networks

in biology

April 23, 2018

Birgit Sollie

- Membrane
- Watery liquid

- Membrane
- Watery liquid

About 50 thousand billion cells in our body

- Membrane
- Watery liquid

- About 50 thousand billion cells in our body
- More than half of our body is water

- Membrane
- Watery liquid

- About 50 thousand billion cells in our body
- More than half of our body is water
- Lung cells are 90% water

- Membrane
- Watery liquid

- About 50 thousand billion cells in our body
- More than half of our body is water
- Lung cells are 90% water
- Bone cells are only 10-20% water

Molecules in the cell

- Nutrients
- Oxygen
- Proteins

Molecules in the cell

- Nutrients
- Oxygen
- Proteins
- Collision:
 - Stick together
 - Exchange
 - Nothing

Molecules in the cell

- Nutrients
- Oxygen
- Proteins
- Collision:
 - Stick together
 - Exchange
 - Nothing

Chemical reactions

Example

$$\begin{array}{c} B + G \longrightarrow P \\ B + R \longrightarrow G \\ 2P \longrightarrow R \end{array}$$

Example

4 molecules: B,G,P and R

$$\begin{array}{c} B+G \longrightarrow P \\ B+R \longrightarrow G \\ 2P \longrightarrow R \end{array}$$

1

2

3

Example

$$\begin{array}{c} B + G \longrightarrow P \\ B + R \longrightarrow G \\ 2P \longrightarrow R \end{array}$$

Example

$$\begin{array}{c} B+G \longrightarrow P \\ B+R \longrightarrow G \\ 2P \longrightarrow R \end{array}$$

Example

$$\begin{array}{c} B + G \longrightarrow P \\ B + R \longrightarrow G \\ 2P \longrightarrow R \end{array}$$

Example

$$\begin{array}{c} B+G \longrightarrow P \\ B+R \longrightarrow G \\ 2P \longrightarrow R \end{array}$$

Example

4 molecules: B,G,P and R

$$\begin{array}{c} B + G \longrightarrow P \\ B + R \longrightarrow G \\ 2P \longrightarrow R \end{array}$$

Directed bipartite network

The network

$$B + G \longrightarrow P$$

$$B + R \longrightarrow G$$

$$2P \longrightarrow R$$

What is the best way to draw this network?

The network

$$B + G \longrightarrow P$$

$$B + R \longrightarrow G$$

$$2P \longrightarrow R$$

What is the best way to draw this network?

Probabilities

- The network is fixed
- Number of molecules changes over time
- Reactions take place with a certain probability
- These probabilities are often unknown
- But.. we want to know them!

Which reaction took place here?

Statistics

- We constantly count the number of molecules in the cell
- **(8,5,2,0)**, (8,5,0,1), ...
- This is our data
- We can estimate the probabilities from the data

Which reactions took place, and how many?

What will happen after a long time?

Equilibrium? Or will a molecule run out?

$$B + G \longrightarrow P$$

$$B + R \longrightarrow G$$

$$2P \longrightarrow R$$

• Out:
$$\begin{array}{c}
\mathbf{B} \\
\mathbf{G} \\
\mathbf{P}
\end{array}
\begin{pmatrix}
0 & 0 & 0 \\
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{pmatrix}$$
, $\begin{array}{c}
\mathbf{B} \\
\mathbf{G} \\
\mathbf{P}
\end{array}
\begin{pmatrix}
1 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 2 \\
0 & 1 & 0
\end{pmatrix}$,

$$B + G \longrightarrow P$$

$$B + R \longrightarrow G$$

$$2P \longrightarrow R$$

• Out:
$$\begin{array}{c}
\mathbf{B} \\
\mathbf{G} \\
\mathbf{P} \\
\mathbf{R}
\end{array}$$
 $\begin{array}{c}
\mathbf{0} \\
0 \\
1 \\
0 \\
0
\end{array}$
 $\begin{array}{c}
\mathbf{B} \\
0 \\
1 \\
0 \\
0
\end{array}$
 $\begin{array}{c}
\mathbf{B} \\
1 \\
1 \\
0 \\
0 \\
0
\end{array}$
 $\begin{array}{c}
\mathbf{B} \\
1 \\
1 \\
0 \\
0 \\
0
\end{array}$
 $\begin{array}{c}
\mathbf{B} \\
1 \\
1 \\
0 \\
0
\end{array}$
 $\begin{array}{c}
\mathbf{C} \\
-1 \\
1 \\
0 \\
-2 \\
0
\end{array}$
 $\begin{array}{c}
\mathbf{B} \\
-1 \\
-1 \\
1 \\
0 \\
-2 \\
0
\end{array}$
 $\begin{array}{c}
\mathbf{C} \\
-1 \\
1 \\
0 \\
-2 \\
0
\end{array}$
 $\begin{array}{c}
\mathbf{C} \\
1 \\
0 \\
-1
\end{array}$
 $\begin{array}{c}
\mathbf{C} \\
-1 \\
1 \\
0 \\
-1
\end{array}$

$$B + G \longrightarrow P$$

$$B + R \longrightarrow G$$

$$2P \longrightarrow R$$

Out - In:
$$\begin{array}{c}
B \\
C \\
C \\
P
\end{array}$$
 $\begin{pmatrix}
-1 & -1 & 0 \\
-1 & 1 & 0 \\
1 & 0 & -2 \\
0 & -1 & 1
\end{pmatrix}$

$$\begin{pmatrix} 8 \\ 5 \\ 2 \\ 0 \end{pmatrix} + \begin{pmatrix} -1 & -1 & 0 \\ -1 & 1 & 0 \\ 1 & 0 & -2 \\ 0 & -1 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} =$$

$$B + G \longrightarrow P$$

$$B + R \longrightarrow G$$

$$2P \longrightarrow R$$

$$\begin{pmatrix} 8 \\ 5 \\ 2 \\ 0 \end{pmatrix} + \begin{pmatrix} -1 & -1 & \mathbf{0} \\ -1 & \mathbf{1} & \mathbf{0} \\ \mathbf{1} & \mathbf{0} & -2 \\ \mathbf{0} & -1 & \mathbf{1} \end{pmatrix} \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 7 \\ 4 \\ 1 \\ 1 \end{pmatrix}$$

Thank you!

