

Scalable algorithms to dispatch jobs efficiently in large-scale many-server queueing networks.

Mark van der Boor

March, 2019

NET WORKS

Queueing Theory

A busy Sunday in a supermarket. Foto: Harold Röring

TU/e

Queueing Theory Decision Theory

A busy Sunday in a supermarket. Foto: Harold Röring

TU/e

Queueing Theory Decision Theory Stochastics

A busy Sunday in a supermarket. Foto: Harold Röring

ГU/е

Queueing Theory Decision Theory Stochastics

"Load Balancing"

A busy Sunday in a supermarket. Foto: Harold Röring

TU/e

Jobs arrive at a central dispatcher and need to be send to one of many servers

People arrive at the queues in a shop and need to be send to one of many cashiers

Texts arrive at a central server and need to be send to one of many satellites.

Cars arrive at a toll road and need to be send to one of many booths

TU/e

Data arrives at a dispatcher and need to be send to one of many servers

Mathematical model

- Model every server as a queue
- For every incoming job, route it to one of the queues.
- What is the smartest you can do?

*Actually, modelling a problem is also (a very important) part of mathematics!

Waiting in an efficient way

Number of jobs in the system:

Number of jobs in the system:

Number of jobs in the system:

TU/e

Exercise – M | M | c queue

In the previous example, only the first job in line gets service. What would happen if *c* jobs can get served simultaneously?

- a) Draw the transition diagram.
- b) Can you find the equilibrium distribution?

Let's look at the fraction of systems that have *i* jobs at time 0. We'll call this $f_i(0)$. In this case: $f_0(0) = 0.60$

- $f_1(0) = 0.25$
- $f_2(0) = 0.125$
- $f_3(0) = 0.025$

At a later time *t*, these fractions will have changed.

 $f_0(t) = 0.50$ $f_1(t) = 0.30$ $f_2(t) = 0.15$ $f_3(t) = 0.05$

Differential Equations

10(.)

$$\frac{df_0(t)}{dt} = -\lambda \cdot f_0(t) + \mu \cdot f_1(t)$$

$$\frac{df_i(t)}{dt} = \lambda \cdot (f_{i-1}(t) - f_i(t)) + \mu \cdot (f_{i+1}(t) - f_i(t)), i \ge 1$$

- Join the Shortest Queue
- Random
- Power-of-2

μ μ μ μ μ μ μ μ μ μ μ μ μ μ μ μ μ ш μ μ μ μ μ μ μ μ *II* μ μ μ μ Ш **II** *µ* μ μ Πμ μ [μ μ μ μ

Power-of-2

- Choose two random servers
- Pick the one with the shortest queue

μ μ μ μ μ μ μ || (μ) μ μ μ μ |||(Ш μ μ μ μ μ ш μ μ μ μ и μ μ μ μ μ μ μ μ **II** *µ* μ II µ μ μ [μ μ μ μ μ

Define $g_i(t)$ to be the fraction of servers with queue length $\geq i$.

Define $g_i(t)$ to be the fraction of servers with queue length $\geq i$.

$$\frac{dg_i(t)}{dt} = g_{i+1}(t) - g_i(t) + \lambda(g_{i-1}(t)^2 - g_i(t)^2)$$

Power-of-2

Define $g_i(t)$ to be the fraction of servers with queue length $\geq i$.

$$0 = g_{i+1}^* - g_i^* + \lambda (g_{i-1}^{*2} - g_i^{*2})$$
$$\Rightarrow g_i^* \sim \lambda^{2^{i-1}}$$

Simulations

TU/e

