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INTRODUCTION

In March 2020 the third “NETWORKS goes to school” event was organised. This 
Masterclass, organised by the NWO Gravitation programme NETWORKS, is the third edition. 
The	aim	of	these	events	is	to	provide	secondary	education	students	and	teachers	a	first	
mathematical	introduction	on	network	science.	This	book	collects	the	material	realised	for	
this third “NETWORKS goes to school” event.

In	Chapter	1	all	the	necessary	background	material	that	is	required	for	Chapter	2	is	
presented. In Section 2.1, we introduce queueing theory by showing how to model and 
analyse	a	queueing	system	with	standard	techniques.	Section	2.2	focuses	on	road	traffic	
networks,	and	discusses	how	navigation	systems	select	routes.	Chapter	3	contains	
exercises on these two topics and in Chapter 4 we provide the corresponding solutions. 
Chapters 2, 3 and 4 were written with the help of Rens Kamphuis (University of Amsterdam) 
and	Youri	Raaijmakers	(Eindhoven	University	of	Technology).

For	more	information	and	the	books	of	the	first	two	masterclasses	“NETWORKS	goes	to
school”,	please	visit	www.networkpages.nl.

On behalf of the NETWORKS programme,

the organising committee of “NETWORKS goes to school”
Jan-Pieter Dorsman (University of Amsterdam)
Nicos Starreveld (University of Amsterdam)
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CHAPTER 1

Mathematical  
background

In this chapter the necessary background knowledge is provided. In 
Section 1.2 some basic concepts from probability theory together with 
some examples are presented. In Section 1.3 some basic concepts from 
graph theory and the theory of algorithms are presented. Dijkstra’s 
algorithm to find the shortest route in a network is discussed. 
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1.1. Basic notation
We start by introducing some notation we will use in the sequel:
(1) N for the set of natural numbers, that is N = {1, 2, 3, · · · };
(2) Z for the set of integer numbers, that is Z = {· · · ,−3,−2,−1, 0, 1, 2, 3, · · · }.
(3) R for the set of real numbers, that is all integer numbers and all the decimal numbers

between them.

1.2. Probability theory
Probability theory is the area of mathematics that studies random phenomena. For example
if the experiment is tossing a coin, then there are two possible outcomes, either heads or
tails. Each outcome occurs with probability 0.5. In order to study such a random experi-
ment we use random variables.

Random variable

A random variableX is a variable whose possible values are outcomes of a random
experiment. We will also use the term stochastic as a synonym for random.

We define a random variable by giving the state space, i.e. the set of all possible values the
variable can take, and the probability function, which yields the corresponding probability
that a given outcome will occur. For the coin toss for example we can define a random vari-
able by assigning to the outcome heads the value 1 and to the outcome tails the value 0. In
this case we have

X(heads) = 1 and X(tails) = 0.

The probability function for this random variable is given by

P(X = 1) = P(heads) = 0.5,

and
P(X = 0) = P(tails) = 0.5,

where for a possible set of outcomes A, P(A) denotes the probability that A occurs. A ran-
dom variable can be discrete or continuous.

Discrete random variables

A random variableX is called discrete when it can take countable many values, for
simplicity we can just say that its values are the integer numbers, that isX ∈ Z.
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Continuous random variables

A random variableX is called continuous when it can take continuously many val-
ues, for simplicity we can just say that its values are the real numbers that isX ∈ R.

For a discrete random variable, we can write down the probability that it equals a specific
value. For a continuous random variable, this is not possible, as there is a continuum of pos-
sible values. We can however specify the probability that a continuous random variable falls
in a range of values by using the density function. The probability that a continuous ran-
dom variable X assumes values in the interval [a, b] is given by the integral of the density
function, denoted by fX , over that interval:

∫ b

a

fX(x)dx = P(X ∈ [a, b]).

The result of this integration gives the area delimited by the graph of the density function
fX , the x-axis and the vertical lines given by y = a and y = b.

Expectation of a random variable

For a random variableX, discrete or continuous, we define the expectation, or ex-
pected value, as the average of a large number of independent realisations of the
random variable. We denote the expectation ofX by E[X].

For a discrete random variable its expectation is defined by

E[X] =

∞∑
k=0

kP(X = k). (1.2.1)

For a continuous random variable its expectation is defined by

E[X] =

∫ ∞

−∞
xfX(x)dx, (1.2.2)

where fX denotes the density function of the random variable, this means that

fX(x)dx = P(X ∈ dx). (1.2.3)

As we will see in the sequel, if the random variable takes only positive values then the in-
tegral in the expectation starts from 0 instead of−∞.

1.2.1. Bernoulli random variable
Bernoulli random variable

A Bernoulli random variable describes the outcome of any single random experi-
ment that asks a yes-no question, like tossing a coin.
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It takes the value 1 with probability p and the value 0 with probability 1 − p. Consider for
example a coin where one side is heavier, then this is a biased coin where one side is fa-
voured. We will use B(p) to denote a Bernoulli random variable with probability p. A Bernoulli
random variable has expectation given by

E[B(p)] = 1 · P(B(p) = 1) + 0 · P(B(p) = 0) = p. (1.2.4)

1.2.2. Binomial random variable
Binomial random variable

A binomial random variable describes the number of successes in a sequence of
independent experiments, each asking a yes–no question.

We make the following assumptions:
• the number n of observations is fixed;
• each observation is independent of the other observations;
• each observation represents one of two outcomes: success or failure (yes-no);
• the probability p of success is exactly the same for each trial.

Under these assumptions, we can describe each binomial random variable by using the
parameters n and p. We will denote a binomial random variable by B(n, p). A binomial ran-
dom variable has state space {0, 1, . . . , n}, and the probability that B(n, p) is equal to k is
given by

P(B(n, p) = k) =

(
n

k

)
pk(1− p)n−k

where (
n

k

)
=

n!

k!(n− k)!

is the binomial coefficient. The symbol
(
n
k

)
is read as ‘n choose k’, as this is the number

of ways to choose k different elements from a total of n elements, where the order of ele-
ments does not matter. The factorial of n is denoted by n! and it is equal to the product
n · (n− 1) · (n− 2) · . . . · 1. The binomial random variable has expectation equal to

E[B(n, p)] =

∞∑
k=0

kP(B(n, p) = k) =

n∑
k=0

k

(
n

k

)
pk(1− p)n−k = np. (1.2.5)

The exact derivation of this result is far away from the scope of this booklet.

EXAMPLE 1.2.1. Suppose that we have a total of 5 colours, and we wish to know how many
combinations there are of 3 different colours, where the order of the colours does not mat-
ter. Then n = 5 and k = 3, and (

5

3

)
=

5!

3!2!
= 10.
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We could also reason in a different way. For the first choice we have a total of 5 possible
colours, for the second choice we have 4 possible colours and for the third choice we have 3
possible colours. The total of combinations of three colours is then 5 · 4 · 3 = 5!/2!. However,
the order of colours did not matter so we still have to divide by the number of ways in which
we can order 3 colours, which is 3 · 2 · 1 = 3!.

EXAMPLE 1.2.2. Consider a coin toss, where possible outcomes are heads or tails. Sup-
pose that we have a fair coin, i.e., the probability for heads is the same as it is for tails. If
we toss the coin 10 times, then the number of coin tosses that came heads from those ten
tosses has a binomial distribution with parameters n = 10 and p = 1

2
. The probability of

getting exactly four heads is equal to

P(X = 4) =

(
10

4

)
1

2

4
(
1− 1

2

)10−4

=
105

512
≈ 0.205.

1.2.3. Geometric random variable

Geometric random variable

A geometric random variable describes the number of failures in a sequence of
random experiments, each asking a yes-no question, until the first success.

We make the following assumptions:
• each observation is independent of the other observations;
• each observation represents one of two outcomes: success or failure;
• the probability p of success is exactly the same for each trial.

Under these assumptions, we can describe each geometric distribution by using the para-
meter p, we will denote a geometric random variable byG(p). The geometric random vari-
able has state space {0, 1, 2, . . .}, and the probability thatG(p) is equal to k is given by

P(G(p) = k) = (1− p)kp.

When the random variableG(p) is equal to k then we know that k failures have occurred
before the first success. The probability of a failure is equal to 1− p and by the assumptions
above the experiments we perform are independent of each other. The geometric random
variable has expectation equal to

E[G(p)] =
∞∑

k=0

kP(G(p) = k) =

∞∑
k=0

k(1− p)kp =
1− p

p
. (1.2.6)

Again the exact derivation of the formula is far away from the scope of this booklet. For
some more details on this formula we refer to the solution of Exercise 4.2.1.
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EXAMPLE 1.2.3. Consider a coin toss, where possible outcomes are heads or tails. Sup-
pose that we have an unfair coin, i.e., the probability for heads is 1

3
and the probability for

tails is 2
3
. Then the probability to get five times tails before the first heads is equal to

P
(
G

(
1

3

)
= 5

)
=

(
2

3

)5
1

3
≈ 0.044.

1.2.4. Exponential random variable

Exponential random variable

The exponential random variable is a continuous random variable and describes
the time elapsed between events that occur continuously and independently at a
constant intensity.

An exponential random variable is characterised by a parameter λ, called the intensity. The
larger this parameter is the higher the frequency of the arriving events. A random variable
having the exponential distribution with parameter λ, denoted by E(λ), has the following
probability distribution function

P(E(λ) ≤ x) = 1− e−λx, x ≥ 0, (1.2.7)

and a probability density function given by

fλ(x) = λe−λx, x ≥ 0. (1.2.8)

The expectation of the exponential random variable is equal to

E[E(λ)] =

∫ ∞

0

xfE(λ)(x)dx =

∫ ∞

0

xλe−λxdx =
1

λ
. (1.2.9)

The exponential random variable has the memoryless property, i.e. that means that

P(E(λ) > x+ y|E(λ) > y) = P(E(λ) > x), x, y ≥ 0. (1.2.10)

The probability on the left-hand side in the equation above is called a conditional probab-
ility, for more details we refer to Section 3.1.1. This memoryless property is quite remark-
able, so let’s look at it from a practical side. Suppose the time until the bus arrives is expo-
nentially distributed. If that would be the case, then if the bus didn’t arrive for an hour, then
it would still take the same amount of time until the bus arrives. But in reality we expect
that if the bus didn’t arrive for an hour, then it will probably arrive soon.



NETWORKS GOES TO SCHOOL 1313NETWORKS GOES TO SCHOOL

1.2.5. Poisson process
Finally, we introduce the Poisson process. This represents a sequence of events where
events happen once every while. The time between events is exponentially distributed.
Since the exponential distribution is memoryless, the Poisson process has a very remark-
able property. If no event happened for a while, it doesn’t imply that some event will occur
soon. As an example, consider the time until you hit a specific number on a roulette wheel.
If that specific number didn’t show up for a while, that doesn’t make it more likely for the
number to show up sooner than normal. In other words: the history of the process has no
influence on the future.

1.2.6. Normal random variable

Normal random variable

The normal random variable is a continuous random variable that has a symmetric
density function. The plot of the density function has a bell-shaped form.

A normal random variable is characterised by two parameters, µ and σ2. Its probability
density function is given by

fµ,σ2(x) =
1

σ
√
2π

e
− (x−µ)2

2σ2 , x ∈ R.

Figure 1.2.1 below shows what this density function looks like for multiple values of µ and
σ2. From this figure, it is clear that the density function is symmetric. Thus, the outcome
of a normal random variable with parameters µ and σ2 is with probability 1

2
smaller than µ,

and with probability 1
2
it is larger. Hence, it is not surprising that the expectation of such a

random variable is equal to the parameter µ.
The parameter σ2 determines how likely it is that the outcome of a normal random variable
deviates from its expectation µ. In other words, if σ is large, the bell shape in Figure 1.2.1
will be much wider, and the actual value of the random variable is likely to be further away
from µ. Because of this feature, the parameter σ2 is also called the variance, and the square
root of the variance, namely σ itself, is called the standard deviation.
The bell shape of the normal random variable occurs naturally in a variety of settings. Sample
averages, for example the average height of a large group of persons, tend to be approxim-
ately normally distributed, which is why normal random variables are often encountered.
The distribution function is however hard to compute. IfN (µ, σ2) denotes a normal random
variable with parameters µ and σ2, we have

P(N (µ, σ2) ≤ t) =

∫ t

x=0

1

σ
√
2π

e
− (x−µ)2

2σ2 dx.
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Figure 1.2.1. The density function of a normally distributed random variable with parameters µ
and σ2.

Since there is no easy way to compute this integral, we often use tables such as Table 4.0.2
in Chapter 4, page 50. This table lists, in case µ = 0 and σ = 1, the value of P(N (0, 1) ≤ t)

for various values of t between 0 and 3.4. For example, using the table, we find that

P(N (0, 1) ≤ 1.23) = 0.8907,

but due to the symmetry also that

P(N (0, 1) ≤ −0.87) = P(N (0, 1) > 0.87)

= 1− P(N (0, 1) ≤ 0.87)

= 1− 0.8078 = 0.1922.

But how do we go about finding the distribution function of normal random variables with
µ �= 0 and σ2 �= 1? It turns out that we can then also use this table. For a normal random
variable with parameters µ and σ2, we have for any number u that

P(N (µ, σ2) ≤ u) = P
(
N (0, 1) ≤ u− µ

σ

)
.

So, if we want to compute P(N (1, 4) ≤ 3) for example, we use the table and look up the
value for t = u−µ

σ
= 3−1√

4
= 1, and find that P(N (1, 4) ≤ 3) = P(N (0, 1) ≤ 1) = 0.8413.



NETWORKS GOES TO SCHOOL 1515NETWORKS GOES TO SCHOOL

1.3. Graph theory
An intuitive definition of a network would be a ‘collection of objects that are interconnected
in some way’. Think for example of a collection of people, who can be interconnected by
friendships; or a collection of cities, which can be interconnected by roads. To make this
idea precise, we turn to graph theory.

Graph

A graph is a pairG = (V,E), where
• V is the set of nodes or vertices;
• E is the set of edges, connecting the nodes.

Typically, we number the nodes from {1, 2, 3, . . . , }. We denote an edge between two nodes
i and j by {i, j}. To define a graph, we can write down the sets V and E.

EXAMPLE 1.3.1. Consider

V = {1, 2, 3, 4, 5, 6}, E = {{1, 2}, {1, 5}, {2, 3}, {2, 5}, {3, 4}, {4, 5}, {4, 6}}.

ThenG = (V,E) is a graph with six nodes and seven edges.

It may be very useful to have a graphical representation of a graph. We do this by typically
drawing nodes as a circle with a label in it, and edges as a line between nodes. However,
you are free to choose any representation you may like! In fact, the location of the nodes is
also arbitrary, it only matters the way in which the edges connect the nodes together.

EXAMPLE 1.3.1 (Continued). In Figure 1.3.1 we see two ways in which the graphG can be
drawn.

6

4

5 1

23

2 3

5 4 6

1

Figure 1.3.1. Two different representations of the graph in Example 1.3.1.
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Figure 1.3.2. A network with seven locations

1.3.1. Finding the shortest route within a network
Now that we have seen how graphs can be used to represent networks, there are many
questions that can be asked about those networks. For instance, what is the shortest route
from one location in a network to another? This is a question that we ask our favourite route
planner on a daily basis.
To answer this question, let us look at the network depicted in Figure 1.3.2. This figure con-
tains a graph, and let us assume that each node in this graph is a location in a network. Fur-
thermore, an edge between two of these nodes represents a road between these two loca-
tions. The numbers in the figure represent the length of the roads, let us say in kilometres.
Using these numbers, we can calculate the distance of a route in a network. For example,
in Figure 1.3.2, it is clear that if we would travel from node 1 to node 4 via node 2, the dis-
tance traversed would be 4+5 = 9 kilometres. But, if we were to travel from node 1 to node
4 via node 3 instead, we would have to cover 7+1 = 8 kilometres. And if we were to travel
from node 1 to node 4 via node 2 and 3, we would have to cover 4+2+1= 7 kilometres.
Thus, ‘the shortest route’ from node 1 to node 4 is the route 1 → 2 → 3 → 4.
For this particular network, we can thus see in an eye blink what the shortest route from
node 1 to node 4 is. But the shortest route from node 1 to node 7 is already harder to de-
termine. And then, this is just a network with seven locations. Finding the shortest route in
a much larger network by trial and error is simply not doable.
So how do we go about this? We will require a more systematic way of finding the shortest
route. Luckily, it exists. We will use an algorithm!

Algorithm

An algorithm is a step-by-step procedure to perform a given task. Algorithms can be
executed by computers, but also by persons.
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nodes 1 2 3 4 5 6 7
Step 1 - (4, 1)∗ (7, 1) No edge No edge No edge No edge
Step 2 - - (6, 2)∗ (9, 2) No edge No edge No edge
Step 3 - - - (7, 3)∗ (11, 3) No edge No edge
Step 4 - - - - (10, 4) (8, 4)∗ No edge
Step 5 - - - - (10, 4)∗ - (16, 6)
Step 6 - - - - - - (13, 5)∗

Table 1.3.1. Dijkstra's shortest route algorithm for the network in Figure 1.3.2.

Dijkstra’s algorithm. More particularly, we will now consider an algorithm that finds
the shortest route in a network. This algorithm was conceived in 1959 by Edsger W. Dijk-
stra, who was a Dutch systems scientist, programmer, software engineer, science essayist
and pioneer in computing science.
The algorithm consists of iteratively performing a number of steps. In each of these steps,
preliminary routes will be improved and in each step, a definitive shortest route from the
starting node to any of the other nodes will be found. For the bookkeeping of these routes,
we will keep records on each node. These records give an upper bound on the distance of
the shortest route of the starting node to the corresponding node. In each of the steps,
these records will be adjusted, and also one of these nodes is marked as ’permanent’, in-
dicating that a definitive shortest route from node 1 to the completed node has been found.
All this is perhaps best demonstrated by means of an example: we want to find the shortest
route from node 1 to node 7 in Figure 1.3.2. Since the network in this figure has 7 loca-
tions, we will need 7-1 = 6 steps of the algorithm. In Table 1.3.1, we will keep track of all
the bookkeeping that the algorithm generates.
To start the algorithm, it is worth noting that we already know the shortest route from node
1 to node 1: this route has distance zero, since we are already there! As such, we mark
node 1 as ‘permanent’, and we will not consider node 1 in the steps we are going to per-
form, as is reflected in the table by ‘-’. The algorithm can now be started with node 1 as
a permanent node. The rest of the nodes are considered ‘non-permanent’. In each of the
steps, we will check which non-permanent nodes can be reached by permanent ones, and
mark a non-permanent node as permanent. We do this as follows.

Step 1: Since node 1 is the only permanent node, we see from Figure 1.3.2 that only nodes
2 and 3 can be reached now from permanent nodes. Node 2 can be reached dir-
ectly from node 1 with a distance of 4, so in the table, we write (4, 1) in the first row
(corresponding to Step 1) in the column of node 2. Similarly, we write 7 for node 3
in the first row, as node 3 can be reached directly from node 1 with distance (7, 1).
In the bracket we always write two numbers, the first number is the distance from a
permanent node and the second represents the node from which it can be reached.
Nodes 4, 5, 6 and 7 can not be reached directly from node 1, and hence we write ‘No
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Figure 1.3.2. A network with seven locations

1.3.1. Finding the shortest route within a network
Now that we have seen how graphs can be used to represent networks, there are many
questions that can be asked about those networks. For instance, what is the shortest route
from one location in a network to another? This is a question that we ask our favourite route
planner on a daily basis.
To answer this question, let us look at the network depicted in Figure 1.3.2. This figure con-
tains a graph, and let us assume that each node in this graph is a location in a network. Fur-
thermore, an edge between two of these nodes represents a road between these two loca-
tions. The numbers in the figure represent the length of the roads, let us say in kilometres.
Using these numbers, we can calculate the distance of a route in a network. For example,
in Figure 1.3.2, it is clear that if we would travel from node 1 to node 4 via node 2, the dis-
tance traversed would be 4+5 = 9 kilometres. But, if we were to travel from node 1 to node
4 via node 3 instead, we would have to cover 7+1 = 8 kilometres. And if we were to travel
from node 1 to node 4 via node 2 and 3, we would have to cover 4+2+1= 7 kilometres.
Thus, ‘the shortest route’ from node 1 to node 4 is the route 1 → 2 → 3 → 4.
For this particular network, we can thus see in an eye blink what the shortest route from
node 1 to node 4 is. But the shortest route from node 1 to node 7 is already harder to de-
termine. And then, this is just a network with seven locations. Finding the shortest route in
a much larger network by trial and error is simply not doable.
So how do we go about this? We will require a more systematic way of finding the shortest
route. Luckily, it exists. We will use an algorithm!

Algorithm

An algorithm is a step-by-step procedure to perform a given task. Algorithms can be
executed by computers, but also by persons.
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edge’ for these nodes in the first row.
The final part of the step consists of marking a non-permanent node as permanent.
We will always mark the node with the lowest distance in the row as permanent. In
this case, this is node 2 with distance 4 from node 1, so we make node 2 perman-
ent. We denote this by adding an asterisk to the record of node 1 in the first row. The
algorithm now says that the shortest route from node 1 to node 2 now simply is the
direct route 1 → 2 with distance 4.

Step 2: In Step 2 we check whether routes can be made shorter using node 2 as an interme-
diate node in the route towards other nodes. For node 3, we know from Step 1 that it
can be reached directly from node 1 within distance 7. However, since node 2 now is
permanent, node 3 can also be reached from node 2: the edge {2, 3} has distance 2,
and we know that node 2 itself can be reached with distance 4. Therefore, node 3 can
also be reached within distance 2 + 4 = 6, when going via node 2. Therefore, we write
(6, 2) for node 3 in Table 1.3.1 in the row corresponding to Step 2 and in the column
corresponding to node 3. We conclude that we have made the route from node 1 to
node 3 one kilometre shorter!
Node 4 can now also be reached using edge {2, 4} with distance 5. As node 2 itself
can be reached within distance 4, node 4 can thus now be reached within distance
5+4 = 9 with preceding node 2. Therefore, we write the record (9, 2) in the table.
From nodes 1 and 2, there are still no routes possible to nodes 5,6 and 7, leading
to a ’No edge’-record.
Between nodes 3 and 4, node 3 has the shorter distance (namely 6), and therefore
we now mark node 3 as permanent with an asterisk.

Step 3: We follow the exact same procedure as the previous steps. Namely, we check whether
the now permanent node 3 leads to shorter routes for the other nodes. This is the
case for node 4. While in Step 2 we found a distance of 9, we now find a distance 7
via node 3, leading to the record (7, 3). Indeed, node 3 could be reached within dis-
tance 6, and the edge {3, 4} has distance 1. Node 5 can now be reached via the per-
manent node 3: namely, node 3 can be reached within distance 6, and edge {3, 5}
has distance 5, leading to a total distance 6+5=11 and the record (11, 4).
The route to node 4 (distance 7) is now shorter than the route to node 5 (distance
11), so node 4 becomes a permanent node. At this point, nodes 1-4 are permanent,
whereas nodes 5, 6 and 7 are still non-permanent. Hence, steps 4-6 will deal with
the latter nodes.

Step 4: As node 4 is now a permanent node, we check how this affects the shortest routes
of the still non-permanent nodes 5-7. Indeed, the route from node 1 to node 5 can
now be made shorter by routing through node 4: we first take the shortest route to
node 4 (distance 7 found in step 3) and then use the edge {4, 5} (distance 3). This
route has distance 7+3=10, which is shorter than the distance 11 in the record for
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node 5 in step 3. Therefore, the record for node 5 in step 4 becomes (10, 4). However,
node 6 can now also be reached, via the new permanent node 4. This route will have
distance 7+1 = 8.
Since node 6 now has the shorter of the two found distances of nodes 5 and 6, node
6 will become permanent. The shortest route from node 1 to node 6 has distance 8,
and cannot be made shorter in future steps.

Step 5: There are just two non-permanent nodes left at this point: nodes 5 and 7. There is no
direct edge between the most recently permanent node 6 and node 5, so the record
of node 5 remains the same as in the previous step: (10, 4). Node 7 can now finally
be reached through node 6 (distance 8 found in step 5) and edge {6, 7} (distance 8),
leading to distance 8+8=16. As a result, we will flag node 5 as permanent, with dis-
tance 10 and preceding node 4.

Step 6: Only node 7 is an non-permanent node at this point. We only need to check whether
node 5, which we flagged as permanent in the previous step, leads to a shorter route
than the one found in step 5 via node 6. This turns out to be the case: if we first go
to node 5 (distance 10), and then take the direct edge {5, 7} (distance 3), the route
will only have distance 13, rather than 16 as found in Step 5. Therefore, the shortest
route from node 1 to node 7 has distance with preceding node 5, leading to the re-
cord (13, 5) in the table. We finally mark node 7 as permanent, so that there are no
non-permanent nodes anymore.

Now that we have performed all the steps of Dijkstra’s algorithm, we know that the shortest
route from node 1 to node 7 has a distance of 13. To find which route this exactly is, we
look at Table 1.3.1, and look at the records with an asterisk (i.e. the records of the nodes
when they were marked as a permanent node). In the row of step 6, we see that the pre-
ceding node of node 7 is node 5, meaning that the shortest route of node 1 to node 7 coin-
cides with the shortest route of node 1 to node 5, plus the additional edge {5, 7}. Node 5
was made permanent in step 5 with preceding node 4, meaning that the shortest route from
node 1 to node 7 must have the form 1 → ... → 4 → 5 → 7. Continuing like this, we find the
shortest route 1 → 2 → 3 → 4 → 5 → 7.
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Figure 1.3.3. A real time animation of Dijkstra's algorithm on the map of Brielle, the animation
can be found on:

networkpages.nl/finding-the-shortest-route-to-your-holiday-destination-dijkstras-algorithm/.

On the Network Pages

For further reading on probability theory, algorithms, networks and graph theory
have a look at networkpages.nl/category/basic-notions/!
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CHAPTER 2

Queueing theory  
and road traffic  
analysis

In this chapter some results from queueing theory and road traffic 
analysis are presented. Section 2.1 is about queueing theory, a branch 
of probability theory that studies cases and systems where there is 
demand for some scarce resource. Section 2.2 concerns road traffic 
analysis and the algorithms that are used in order to determine optimal 
routes on networks.
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2.1. Queueing theory - How long will the queue be?

Queueing theory

Queueing theory is a branch of operations research that studies waiting lines or
queues from a mathematical perspective.

Some typical everyday examples of queueing systems can be found in supermarkets, in-
dustrial production systems and hospitals. In a supermarket customers arrive to the coun-
ters, they may have to wait in the queue until their turn comes, they are served and then
leave the supermarket. In an industrial production system, like a factory producing cars,
the products also have to undergo multiple stages until they are assembled and the serv-
ers may be either machines or individuals. Finally, patients arriving to a hospital often need
access to resources like doctors, beds, medicine and equipment. A new patient can go into
treatment only when the hospital has the necessary resources available, for example only if
there are free beds. In short, queueing theory helps us to analyse such systems and make
important decisions about the layout, capacity and control.

2.1.1. Queueing model
To study any kind of system or real-life situation we first have to construct a mathematical
model. To illustrate what a mathematical model is, you can think of a toy car of a Ferrari
(which is also called amodel car). Such a toy car is not precisely like the Ferrari, since it
does not contain a working engine, is made of different material, is much smaller, and so
on. However, it does give you a good idea of the shape, how it looks when it is driving, and
how it compares to other toy cars. As another example, architects make models of their
buildings on a small scale (also called a scale model) to study how they would look, how
much light will enter the building, how much material is needed, and so on. In a similar way,
mathematical models describe a real-life phenomenon, using mathematical concepts and
language. The model will not resemble reality perfectly, but can be used to learn from. In
our setting we are interested in queueing models. The idea behind such a model is to rep-
licate the behavior of a queue as accurately as possible, so that the model can be used to
make predictions on how the system will behave. Among others, a queueing model is char-
acterised by:

• The arrival process of customers.
Customers arrive to a system at, possibly random, points in time, we call this the ar-
rival process. The time between two consecutive arrivals is called the interarrival
time and is usually described by a random variable. We assume that the interarrival
times between customers are independent and have a common probability distribu-
tion. In many practical situations customers arrive according to a Poisson stream (i.e.,
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the interarrival times have an exponential distribution). Customers may arrive one
by one, or in batches. An example of batch arrivals is the customs once at the border
where travel documents of bus passengers have to be checked.

• The behavior of customers.
Customers may be patient and willing to wait. Or customers may be impatient and
leave after a while. For example, in call centres, customers will hang up when they
have to wait too long before an operator is available, and they possibly try again after
a while.

• The service times.
Each customer needs some time to be served by the server. This time is called the
service time of that customer. Often customers don’t have exactly the same ser-
vice time, hence in many cases we consider the service time to be a random variable.
Usually we assume that the service times are independent and have a common distri-
bution function, and that they are independent of the interarrival times. For example,
the service times can be deterministic or exponentially distributed. It can also occur
that service times depend on the queue length. For example, the processing rates of
the machines in a production system can be increased once the number of jobs wait-
ing to be processed becomes too large.

• The service discipline.
Customers can be served one by one or in batches. We have many possibilities for the
order in which customers can be served. We mention:

– first come first served, i.e., in order of arrival;
– random order;
– last come first served (e.g., in a computer stack or a shunt buffer in a production
line);

– priorities (e.g., rush orders first, shortest processing time first);
– processor sharing (in computers that equally divide their processing power over

all jobs in the system).
• The service capacity.
There may be a single server or a group of servers helping the customers.

• The waiting room.
There can be limitations with respect to the number of customers in the system, i.e.
the customer being served, if any, and the number of customers waiting in the queue.
For example, in a data communication network, only finitely many cells can be buf-
fered in a switch. The determination of good buffer sizes is an important issue in the
design of these networks.

All these different aspects of queueing systems result in a huge variety of queueing models,
which means that an efficient way to characterise queueing models based on its proper-
ties is vital. Luckily, D.G. Kendall introduced in 1953 a shorthand notation to characterise
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queueing models. We explain the notation via the simplest model denoted byM/M/1. In
theM/M/1 queueing model each letter represents a property of the system, in particular:

• The first letter: the interarrival time between arriving customers has an exponential
distribution with parameter λ. The M stands for Memoryless.

• The second letter: the service time distribution has an exponential distribution with
parameter µ. Other models that are often studied areM/D/1 which stands for de-
terministic service times orM/G/1 which stands for general service times.

• The number: the number of servers in the queueing model.

2.1.2. The M/M/1 queue
After all this notation we can finally start analysing theM/M/1 queue. Let L be a random
variable that denotes the number of customers in the system. We start analysing the L by
constructing a flow diagram for L. Below we explain how to construct this flow diagram.

0 1 2 . . . n− 1 n . . .

Figure 2.1.1. State space for L.

In this figure the numbers denote the state of the system, i.e., how many customers are in
the system. Suppose that L = i, that is there are i customers in the system. Then two things
can occur, the customer who is being served departs from the system before a new cus-
tomer arrives, or a new customer arrives before the customer who is being served departs
the system. The first event corresponds to the transition {L = i} → {L = i− 1} since a cus-
tomer departs. The service time has an exponential distribution with parameter µ, hence
we say that the transition {L = i} → {L = i − 1} occurs with rate µ. On the other side the
second event corresponds to the transition {L = i} → {L = i+ 1} since a customer arrives
to the system. The interarrival time has an exponential distribution with parameter λ, hence
the transition {L = i} → {L = i + 1} occurs with rate λ. We can illustrate these transitions
using the following flow diagram, where we have chosen the case i = 1.

0 1 2 . . . n− 1 n . . .

λ

µ

Figure 2.1.2. Flow from state {L = 1}.

Doing this for all possible states we obtain the following flow diagram
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0 1 2 . . . n− 1 n . . .

λ λ λ

µ µ µ

Figure 2.1.3. Flow diagram for theM/M/1 queue.

Since the customers arrive to the system according to a Poisson process, that is at random
times, and have a service time which is also random, i.e. exponentially distributed, we ob-
serve that L will also be a random variable. Thus we want to know the probabilities that at
an arbitrary point in time there will k customers in the system (which means 1 customer in
service, and k − 1 customers waiting for service). We denote this probability by pk. We are
going to compute the probabilities pk = P(L = k), for k = 0, 1, 2, . . . using a flow conserva-
tion argument.

Flow Conservation Argument

The probability flux in any subset of states is equal to the probability flux out of that
subset of states. Intuitively, this means that you enter a state just as many times as
you leave a state.

0 1 2 . . . n− 1 n . . .

λ λ λ

µ µ µ

Figure 2.1.4. Flow diagram of the probability flux for theM/M/1 queue.

Consider for example the set consisting of the state 0, i.e., where no customers are present
in the system. Then the probability flux out of this set is λp0, because we are in state 0 with
probability p0 and we leave it with rate λ. The probability flux into the set {0} is equal to
µp1, because we can reach state 0 only from state 1 in which we are with probability p1 and
the transition from state 1 to 0 happens with rate µ. Then we get the first equation

λp0 = µp1,

which we can rewrite to
p1 =

λ

µ
p0 = ρp0, (2.1.1)
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where ρ = λ/µ. If ρ < 1, then ρ is called the occupation rate, because it is the fraction of
time the server is working. Intuitively, ρ < 1means that there are on average more depar-
tures than arrivals so the queue will not keep growing. Suppose now that we consider the
subset {1}, then we obtain the equation

(λ+ µ)p1 = λp0 + µp2,

which, after substituting p1 from (2.1.1), can be rewritten to

p2 = ρ2p0.

In general we obtain the equations

(λ+ µ)pk = λpk−1 + µpk+1, k = 1, 2, . . .

and

pk = ρkp0, k = 0, 1, 2, . . . .

Hence it suffices to compute p0, which denotes the probability that there are no customers
waiting, and there is nobody being served. We know that the sum of all the probabilities has
to be equal to one, hence

∞∑
k=0

pk =
∞∑

k=0

ρkp0 = 1.

Solving this equation yields

p0 = 1− ρ.

For derivation of this result have a look at Exercise 3.2.1. Hence we obtain the following
result for the desired probabilities

pk = ρk(1− ρ), k = 0, 1, 2, . . .

Hence, the number of customers in an M/M/1 system is a geometric random variable with
success probability 1 − ρ (see Section 1.2.3). With this result already some quantities can
be computed. For example the average number of customers in the system is equal to

E[L] =
∞∑

k=0

kpk =

∞∑
k=0

kρk(1− ρ) =
ρ

1− ρ
. (2.1.2)

See also Exercise 3.2.1 for more details on how to derive this result.
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2.1.3. Mean value approach

The analysis performed in the previous section is only valid for exponential service times,
or else only in theM/M/1model. In this section we will present a technique called the
mean value approach. This approach can be used to analyse queueing models with general
service times, that is theM/G/1 queue. A short reminder, in theM/G/1 queue customers
arrive according to a Poisson process to the system and their service time has a general
probability distribution, i.e. it is not necessarily the exponential distribution. Let’s see how
the mean value approach works.

Consider a customer who just arrived at the queue. There are two possibilities, either the
server is busy with another customer or the server is free. If the server is busy with another
customer then an arriving customer needs to wait for some additional time until this cus-
tomer is fully served. The customer in service has been in service for some time, hence the
remaining service time is not equal to the full service time. This remaining service time is
called the residual service time of the customer in service. Next to the customer in service
there may also be customers in the queue who arrived earlier. An arriving customer has to
wait for all the customers who have been already waiting in the queue, if any. If there are
no customers in the system and the server is free then the arriving customer does not have
to wait at all. Let’s quantify this argument in a formula giving the average waiting time of an
arriving customer at the system.

Waiting Time

The waiting time of an arriving customer, denoted byW , is a random variable rep-
resenting the time an arriving customer has to wait in the queue. If the system is
empty then the waiting time is zero.

The service times of customers are random variables which are independent of each other
and have the same probability distribution. Let the random variable B denote the service
time, let R denote the residual service time of a customer in service and let LQ denote the
number of customers waiting in the queue. Then,

E[W ] = E[LQ]E[B] + ρE[R]. (2.1.3)

Here E[LQ]E[B] is the expected time the arriving customers has to wait for customers in the
queue and ρE[R] is the expected time the arriving customer has to wait for the customer
in service. The argument above and the equation in 2.1.3 show how the mean value ap-
proach can be applied to study queueing systems. The quantities E[B] and E[R] are in gen-
eral known when the distribution of the service time is given.
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where ρ = λ/µ. If ρ < 1, then ρ is called the occupation rate, because it is the fraction of
time the server is working. Intuitively, ρ < 1means that there are on average more depar-
tures than arrivals so the queue will not keep growing. Suppose now that we consider the
subset {1}, then we obtain the equation

(λ+ µ)p1 = λp0 + µp2,

which, after substituting p1 from (2.1.1), can be rewritten to

p2 = ρ2p0.

In general we obtain the equations

(λ+ µ)pk = λpk−1 + µpk+1, k = 1, 2, . . .

and

pk = ρkp0, k = 0, 1, 2, . . . .

Hence it suffices to compute p0, which denotes the probability that there are no customers
waiting, and there is nobody being served. We know that the sum of all the probabilities has
to be equal to one, hence

∞∑
k=0

pk =
∞∑

k=0

ρkp0 = 1.

Solving this equation yields

p0 = 1− ρ.

For derivation of this result have a look at Exercise 3.2.1. Hence we obtain the following
result for the desired probabilities

pk = ρk(1− ρ), k = 0, 1, 2, . . .

Hence, the number of customers in an M/M/1 system is a geometric random variable with
success probability 1 − ρ (see Section 1.2.3). With this result already some quantities can
be computed. For example the average number of customers in the system is equal to

E[L] =
∞∑

k=0

kpk =

∞∑
k=0

kρk(1− ρ) =
ρ

1− ρ
. (2.1.2)

See also Exercise 3.2.1 for more details on how to derive this result.
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Average Residual Service Time

The average residual service time, denoted by E[R], is given by the formula

E[R] =
E[B2]

2E[B]
, (2.1.4)

where B denotes the service time and

E[B2] =

∫ ∞

0

x2fB(x)dx.

In the equation above fB denotes the probability density function of the random
variable B.

The exact derivation of the equation in (2.1.4) is above the scope of this booklet and it thus
omitted. Returning to (2.1.3), we observe that this equation contains two unknown quantit-
ies, namely E[W ] and E[LQ]. Hence in order to be able to find E[W ] and E[LQ] we need one
more equation. This equation is given by Little’s law!

Little’s law Little’s law is the most important relation between E[LQ], the mean number
of customers in the queue, E[W ], the mean waiting time of a customer and λ, the average
number of customers entering the system.

Little’s Law

Little’s law states that

E[LQ] = λE[W ].

Intuitively, this result can be understood as follows. Suppose that all customers pay 1 euro
per unit time while in the queue. This money can be earned in two ways.

• The first possibility is to let pay all customers continuously in time. Then the average
reward earned by the system equals E[LQ] euro per unit time.

• The second possibility is to let customers pay 1 euro per unit time for their residence
in the queue when they leave. In equilibrium, the average number of customers leav-
ing the system per unit time is equal to the average number of customers entering the
system. So the system earns an average reward of λE[W ] euro per unit time.

The system earns the same in both cases. Now by substituting this in Equation 2.1.3 we
find

E[W ] =
ρE[R]

1− ρ
, (2.1.5)

where ρ = λ
µ
.
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EXAMPLE 2.1.1. Suppose that the service time is exponentially distributed with parameter
µ. Then

E[B] =
1

µ
and E[B2] =

2

µ2
. (2.1.6)

From (2.1.4) we obtain

E[R] =

2
µ2

2 1
µ

=
1

µ
.

Hence from (2.1.5) we obtain
E[W ] =

ρ

1− ρ

1

µ
.

In Exercise 3.2.1(3) you are asked to verify the result in (2.1.2) for E[L].

2.1.4. Conservation law
So far we only considered the first-come-first-served service discipline (FCFS). Now, we will
extend this. Consider a single-server queue with r types of customers. Type i customers
arrive according to a Poisson arrival stream with rate λi, i = 1, . . . , r. The mean service time
and mean residual service time of a type i customer is denoted by E[Bi] and E[Ri].
Customers enter service in an order independent of their service times and they may not be
interrupted during their service. So, for example, the customers may be served according
to FCFS, random order or a non-preemptive priority rule. Below we derive a conservation
law for the mean waiting times of the r type of customers, which expresses that a weighted
sum of these mean waiting times is independent of the service discipline. This implies that
an improvement in the mean waiting time of one customer type owing to a service discipline
will always degrade the mean waiting time of another customer type.
Let E[V (P )] and E[LQ

i (P )] denote the mean amount of work in the system and the mean
number of type i customers waiting in the queue, respectively, for service discipline P . The
mean amount of work in the system is given by

E[V (P )] =

r∑
i=1

E[LQ
i (P )]E[Bi] +

r∑
i=1

ρiE[Ri].

Clearly the residual service time does not depend on the discipline P . The crucial obser-
vation is that the amount of work in the system does not depend on the order in which the
customers are served. The amount of work decreases with one unit per time unit independ-
ent of the customer being served and when a new customer arrives the amount of work is
increased by the service time of the new customer. Hence, the amount of work does not
depend on P . Using Little’s law

E[LQ
i (P )] = λiE[Wi(P )], for all i = 1, . . . r.
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Hence we obtain the following conservation law for the mean waiting times,

r∑
i=1

ρiE[Wi(P )] = constant with respect to the service discipline P.
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Figure 2.1.5. Consult a mathematician before you visit Disneyland, because queues can be
large! By Ellen Cardinaels.

On the Network Pages

For further reading on queueing theory and its applications have a look at:
(1) The quest for a beter Internet by Mark van der Boor,

networkpages.nl/the-quest-for-a-better-internet/.
(2) Consult a mathematician before you visit Disneyland by Ellen Cardinaels,

networkpages.nl/consult-a-mathematician-before-you-visit-disneyland/.
(3) Can flipping the queue spare you time by Youri Raaijmakers,

networkpages.nl/can-flipping-the-queue-spare-you-time/.
(4) Traffic lights no longer needed: back to the future by Rik Timmerman,

networkpages.nl/traffic-lights-no-longer-needed-back-to-the-future/.
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Hence we obtain the following conservation law for the mean waiting times,
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ρiE[Wi(P )] = constant with respect to the service discipline P.



NETWORKS GOES TO SCHOOL32 33NETWORKS GOES TO SCHOOL

2.2. Road traffic analysis - Route selection in a network
A road traffic network consists of a collection of roads that connects various cities. The
users of this network want to travel from their current location, called the origin, to some
desired destination. These users travel in a vehicle and will therefore be called the drivers
in the network.
It will often be the case that a driver is able to choose between different routes to move
from their origin to their destination. The routes they can choose from will have different
characteristics. For example, when entering a destination in a navigation system, the device
will ask the user to choose between the fastest route and the shortest route. It will depend
on the preferences of the driver which route is chosen. A driver with ample time who is
concerned about the fuel consumption of his car may select the shortest route, whereas
someone who is in a hurry is likely to choose the fastest route.
It is not difficult to determine the length of a route that connects the origin and the destin-
ation. The length of the individual road segments that make up the route are fixed, and the
total travel distance is simply the sum of these segments. We can therefore say that the dis-
tance between origin and destination is a deterministic quantity. The travel time between
origin and destination, however, is certainly not deterministic. For example, you may get
stuck in a traffic jam as a result of an accident which will drastically increase your travel
time. One could also think of smaller hindrances, such as having to wait for a bridge that is
opening or repeatedly having to stop for red lights. Some routes will be more likely to cause
delays than others. These routes are said to bear a higher risk related to the travel time.
Therefore, in contrast to travel distances, travel times are stochastic.
Since travel times are stochastic, it is important to realise that the fastest route suggested
by your navigation system is only the fastest route in expectation. It may be the case that
this route consists of roads that are likely to cause delays. As a result, the actual travel time
of this route may be very uncertain. It is because of this uncertainty that the fastest route is
not always the most desirable route.

2.2.1. Network representation
Let’s try to present the previous discussion as a network. Since many roads are two-way
streets, it is natural to express a road traffic network as an undirected graphG = (V,E). In
Figure 2.2.1 below we illustrate the graphG with

V = {1, 2, 3, 4, 5, 6, 7},

E = {{1, 2}, {1, 3}, {2, 3}, {2, 4}, {3, 4}, {3, 5}, {4, 5}, {4, 6}, {5, 7}, {6, 7}}.

The vertices represent cities and the edges represent roads that link these cities. Given
an origin and a destination in this road traffic network, we are already able to determine
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Figure 2.2.1. Most reliable route network model

the shortest route using Dijkstra’s algorithm. With slight adjustments, however, we may
use Dijkstra’s algorithm to find routes that minimise other characteristics. For example,
consider a driver that is not interested in finding the shortest route, but who wants to find
the route that minimises the probability of getting stuck in a traffic jam. Note that this route
may be a big detour from the shortest route and is therefore unlikely to be the fastest route.
We call this route the most reliable route. The following is based on Example 6.3-2 in the
book “Operations Research, An Introduction” (9th Edition) by Hamdy A. Taha.
In Figure 2.2.1 we assigned to each edge {i, j} a probability pij of not running into a traffic
jam on the road between city i and j. For example, p12 = 0.2 and p35 = 0.5. Note that there
is no direct link between city 1 and 7, but the route 1 → 2 → 4 → 6 → 7 is a possible route
between those cities and the probability of not running into a traffic jam on this route is

p17 = p12 × p24 × p46 × p67 = 0.2× 0.8× 0.35× 0.7 ≈ 0.04.

Hence, if the driver chooses this route, there is a probability of not running into a traffic jam
of only 4%. This does not look very promising indeed! Perhaps we are able to find a route on
which it is less likely to get stuck in traffic?
This problem can be formulated as a shortest route model by using a logarithmic trans-
formation. This way, we can convert the product of probabilities into a sum of logarithms
of probabilities. That is, the probability assigned to our previously suggested route is trans-
formed to

p17 = p12 × p24 × p46 × p67 =⇒ log p17 = log p12 + log p24 + log p46 + log p67.

If we are able to find a route that maximises log p17, this same route would also maximise
the actual probability p17 of not running into a traffic jam. This is due to the fact that the log-
arithm is a strictly increasing function. Note that Dijkstra’s algorithm is designed to find a
route that minimises a sum instead of maximising it. However, this problem can easily be
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Figure 2.2.2. Most reliable route representation as a shortest route model

countered by minimising− log p17. In Figure 2.2.2 we have replaced each pij by− log pij .
We have now successfully converted our problem to the shortest route problem which we
looked at in Section 1.3.1, since the shortest route of the network in Figure 2.2.2 corres-
ponds to the most reliable route in the sense that this route has the highest probability of
not running into a traffic jam.

To find the most reliable route, we thus use the weights in Figure 2.2.2 and act as if they are
distances. Making a table for the weights using Dijkstra’s algorithm, in the same way as we
did in Section 1.3.1, leads to Table 2.2.1.

nodes 2 3 4 5 6 7
Step 1 (1.609, 1) (0.105, 1)∗ No edge No edge No edge No edge
Step 2 (0.616, 3) - (0.210, 3)∗ (0.798, 3) No edge No edge
Step 3 (0.433, 4)∗ - - (0.798, 3) (1.260, 4) No edge
Step 4 - - - (0.798, 3)∗ (1.260, 4) No edge
Step 5 - - - - (1.260, 4)∗ (1.597, 5)
Step 6 - - - - - (1.597, 5)∗

Table 2.2.1. Dijkstra's shortest route algorithm for the network in Figure 2.2.2.

From this table, we see that the most reliable route from city 1 to city 7 is the route 1 →
3 → 5 → 7. As a side note, if we would like to go from city 1 to city 2 instead, the most
reliable route is not the direct route 1 → 2, but by following the records in the table, the
most reliable route in this case would be 1 → 3 → 4 → 2. When looking at Figure 2.2.1, this
seems right: the direct probability 0.2 of not running into a traffic jam is indeed smaller than
the probability 0.9× 0.5× 0.45 = 0.2025 of the route found by Dijkstra’s algorithm!
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2.2.2. Refinements using probability distributions
So far, we have seen that we can use Dijkstra’s algorithm in order to both find the shortest
and the most reliable route. However, these routes may both be undesirable for a user of
the road traffic network. The shortest route may be a very slow route due to congestion,
whereas the most reliable route may be a big detour from the destination, resulting in a long
travel time.
A much more realistic objective that a driver may have is that they want to arrive at their
destination ‘on time’. For example, consider the situation where a driver has a meeting in
one hour and they want to maximise the probability of not being late. Perhaps the most
reliable route is the best choice, as the low uncertainty ensures that the driver will arrive
on time. Another extreme is the situation in which a high risk route, meaning a short route
which is likely to be congested, is the only route which gives a chance of arriving on time. Of
course, in this case the high risk route would be the best route. But how do we determine
the best route mathematically?
Instead of looking at the length or the reliability of a road between two cities, a more rel-
evant quantity would be the travel time between these two cities. We have already argued
before that the travel time is a stochastic quantity. This is where probability distributions
come in. Routes that are expected to have a short travel time will have a probability distri-
bution that is centred around a relatively low value. Unreliable routes, i.e. routes on which
there is high uncertainty over the travel time, will have a probability distribution that is more
spread.
Let’s go back to the situation in Figure 2.2.1. The edge between city 1 and 3 indicates that
there is a low probability of getting stuck in a traffic jam on this road. Therefore, the travel
time to move between city 1 and 3 will be fairly certain and its probability distribution will
be relatively concentrated. In contrast, the road between city 1 and 2 is likely to be con-
gested making the travel time between these two cities rather uncertain. Hence, this prob-
ability distribution will be more spread, or equivalently, the travel time will have a higher
variance.
For simplicity, we will assume that the travel times are distributed according to a normal
distribution. An objection to this assumption is that the normal distribution also assigns
positive probability to negative values, which does not make sense in our application. How-
ever, this distribution is intuitive to work with and it allows us to do some explicit computa-
tions without the use of a computer.
In Figure 2.2.3 we once again consider the same road traffic network, but we are now con-
cerned with the random travel times between the cities instead of the probability of getting
stuck in a traffic jam. We let the random variable Tij denote the travel time between city i
and j and we write Tij ∼ N (µij , σ

2
ij) to indicate that Tij is normally distributed with mean

µij and variance σ2
ij . Possible densities for the travel time distribution between city 1 and

3 and city 1 and 2 that would agree with the previous discussion are given in Figure 2.2.4.
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Figure 2.2.3. Road traffic model with stochastic travel times

What is interesting to note here is that even though 13 = µ12 < µ13 = 15, inspection of
these densities seems to imply that

P(T12 ≥ 20) > P(T13 ≥ 20). (2.2.1)

It is remarkable that the road between city 1 and 2 has a lower mean travel time compared
to the route between city 1 and 3, but at the same time this route is more likely to take
more than 20 minutes to traverse. This is of course caused by the higher variance of T12.
This example demonstrates that the expected fastest route, which is the route that is most
likely to be suggested by a navigation system, is not necessarily the best route for drivers
that want to maximise the probability of arriving at their destination on time. If we want to
determine the best route for these drivers, it is crucial that we know the probability distribu-
tion of the travel times.

2.2.3. Concluding remarks
We now know that the road traffic network in Figure 2.2.1 does not tell the whole story. In-
stead of only knowing the expected travel times and the reliability of a road network, know-
ing the actual probability distribution of the travel times would provide us with much more
information. This in turn allows us to answer questions that are of greater relevance for
some drivers.
The model we discussed in which the travel times are assumed to be independent and nor-
mally distributed could already be fruitful in practice in order to find routes that are both
fast and reliable. However, there is room for improvement as the assumptions we made are
not very realistic.
For one, we have already argued that travel times cannot be normally distributed. This is
due to the normal distribution assigning positive probability to negative values. In other
words, if travel times are normally distributed, there is a positive probability of having a
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Figure 2.2.4. The density of T13 ∼ N (15, 4) (left) and T12 ∼ N (12, 16) (right).

negative travel time. Nonsense! Therefore, it is better to assume that the travel times fol-
low some non-negative distribution such as the log-normal distribution or the gamma dis-
tribution. Even worse, it can happen that none of the well-known probability distributions
provide a good explanation of the actual travel times. In this case we would have to resort
to so-called non-parametric methods. Another assumption we made is that the travel times
are independent across roads. This means that any information regarding the travel time of
one road has no impact on the travel time of any other road. However, one could argue that
the level of congestion of a road is positively correlated with the level of congestion of the
adjacent roads. This violates the assumption, since the level of congestion clearly has an
impact on the travel times. These issues greatly complicate the analysis of the network.
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Figure 2.2.3. Road traffic model with stochastic travel times

What is interesting to note here is that even though 13 = µ12 < µ13 = 15, inspection of
these densities seems to imply that

P(T12 ≥ 20) > P(T13 ≥ 20). (2.2.1)

It is remarkable that the road between city 1 and 2 has a lower mean travel time compared
to the route between city 1 and 3, but at the same time this route is more likely to take
more than 20 minutes to traverse. This is of course caused by the higher variance of T12.
This example demonstrates that the expected fastest route, which is the route that is most
likely to be suggested by a navigation system, is not necessarily the best route for drivers
that want to maximise the probability of arriving at their destination on time. If we want to
determine the best route for these drivers, it is crucial that we know the probability distribu-
tion of the travel times.

2.2.3. Concluding remarks
We now know that the road traffic network in Figure 2.2.1 does not tell the whole story. In-
stead of only knowing the expected travel times and the reliability of a road network, know-
ing the actual probability distribution of the travel times would provide us with much more
information. This in turn allows us to answer questions that are of greater relevance for
some drivers.
The model we discussed in which the travel times are assumed to be independent and nor-
mally distributed could already be fruitful in practice in order to find routes that are both
fast and reliable. However, there is room for improvement as the assumptions we made are
not very realistic.
For one, we have already argued that travel times cannot be normally distributed. This is
due to the normal distribution assigning positive probability to negative values. In other
words, if travel times are normally distributed, there is a positive probability of having a
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Figure 2.2.5. Reducing travel times can be achieved in multiple ways, finding the optimal route
is one of them as we discussed. But there is more! You can also monitor traffic, that is what

traffic lights do for example.
networkpages.nl/traffic-lights-no-longer-needed-back-to-the-future/

On the Network Pages

For more information on algorithms, networks and road traffic analysis have a look
at:

(1) Finding the shortest route to your holiday destination: Dijkstra’s algorithm by
Bart Jansen,

networkpages.nl/finding-the-shortest-route-to-your-holiday-destination-iv-
dijkstra-algorithm/.

(2) How to plan Valentine’s day using a matching algorithm by Bart Jansen,

networkpages.nl/how-to-plan-valentines-day-using-a-matching-algorithm/.
(3) Can Traffic Congestion: Braess’ Paradox by Peter Kleer,

networkpages.nl/traffic-congestion-iv-braess-paradox/.
(4) Traffic lights no longer needed: back to the future by Rik Timmerman,

networkpages.nl/traffic-lights-no-longer-needed-back-to-the-future/.



CHAPTER 3

Exercises

This chapter contains exercises on the theory presented in  
chapter 1 and 2. 
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3.1. Exercises on probability theory

3.1.1. Conditional probabilities and expectations

A conditional probability is denoted by P(A|B), which corresponds to

the probability of A happening, given that B happens.

Let’s look at a few simple examples. We denote byX the random variable that represents
the number that you roll with a six-sided die.
(1) What is the probability that you roll a 6 with a six-sided die? In a formula: P(X = 6).
(2) What is the probability that you roll a 6, given that you roll at least a 4; P(X = 6|X ≥

4)?
(3) You can use the following formula to compute conditional probabilities:

P(A|B) =
P(A and B)

P(B)
. (3.1.1)

Check that this formula works by solving the second question again, but now with the
formula.

(4) Similarly to probabilities, we can also look at expectations. What is the expected
number you roll with a six-sided die? In formulas: E[X].

(5) What is the expected number that you roll, given that you roll at least a 4;
E[X|X ≥ 4]?

3.1.2. The exponential distribution

The exponential distribution is defined in the following way. Suppose thatX is exponen-
tially distributed with parameter λ. Then P(X < t) = 1− e−λt.
(1) Calculate P(X ≥ t).
(2) Calculate P(1 < X < 2).
(3) Calculate the expectation of the exponential distribution with the following formula:

E[X] =

∫ ∞

0

P(X ≥ t)dt.

(4) Use Equation (3.1.1) to prove the memoryless property of the exponential distribu-
tion:

P(X > t+ u|X > t) = P(X > u).
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3.2. Exercises on queueing theory

3.2.1. Mean queue length
We introduce ρ = λ/µ to make the calculations easier. In theM |M |1 queue we found that
the probability of having k customers in the system, in equilibrium, equals

pk = (1− ρ)ρk, k = 0, 1, 2, . . . .

(1) Of course, the sum of all these probabilities should sum up to 1. Prove that∑∞
i=0 pi = 1.

(2) We can calculate the mean queue length using these probabilities;

E[L] =
∞∑

k=0

kpk =

∞∑
k=0

k(1− ρ)ρk.

Calculate E[L].
(3) In Example 2.1.1 we derived an expression for the mean waiting time E[W ]. Use

Little’s law to find E[LQ]. What is the relation between E[L] and E[LQ]? Use this re-
lation to compute E[L].

3.2.2. Busy supermarket
Think of a supermarket in your area. We model the checkout of this supermarket as an
M/M/1 queue with an arrival rate of 60 customers per hour, thus λ = 1 (customer per
minute), and a mean service team of 45 seconds, thus µ = 1.33 (customer per minute).

(1) Draw the flow diagram for thisM/M/1 queue.
(2) Determine the probabilities P(L = 0), P(L = 1) and P(L = 2).

We call the supermarket crowded when there are 3 or more customers in the system.

(3) On average, what is the fraction of the day that the this supermarket is crowded?

3.2.3. Broken televisions
A repair man fixes broken televisions. The repair time is exponentially distribution with a
mean of 0.5 hour, thus µ = 2. Broken televisions arrive at his repair shop according to a
Poisson stream, on average 10 broken televisions per day (8 hours), thus λ = 8

10
= 0.8.

(1) What is the fraction of time that the repair man has no work to do?
(2) How many televisions are, on average, at his repair shop?
(3) What is the mean sojourn time (waiting time plus repair time) of a television?

42 NETWORKS GOES TO SCHOOL

3.1. Exercises on probability theory

3.1.1. Conditional probabilities and expectations

A conditional probability is denoted by P(A|B), which corresponds to

the probability of A happening, given that B happens.

Let’s look at a few simple examples. We denote byX the random variable that represents
the number that you roll with a six-sided die.
(1) What is the probability that you roll a 6 with a six-sided die? In a formula: P(X = 6).
(2) What is the probability that you roll a 6, given that you roll at least a 4; P(X = 6|X ≥

4)?
(3) You can use the following formula to compute conditional probabilities:

P(A|B) =
P(A and B)

P(B)
. (3.1.1)

Check that this formula works by solving the second question again, but now with the
formula.

(4) Similarly to probabilities, we can also look at expectations. What is the expected
number you roll with a six-sided die? In formulas: E[X].

(5) What is the expected number that you roll, given that you roll at least a 4;
E[X|X ≥ 4]?

3.1.2. The exponential distribution

The exponential distribution is defined in the following way. Suppose thatX is exponen-
tially distributed with parameter λ. Then P(X < t) = 1− e−λt.
(1) Calculate P(X ≥ t).
(2) Calculate P(1 < X < 2).
(3) Calculate the expectation of the exponential distribution with the following formula:

E[X] =

∫ ∞

0

P(X ≥ t)dt.

(4) Use Equation (3.1.1) to prove the memoryless property of the exponential distribu-
tion:

P(X > t+ u|X > t) = P(X > u).



NETWORKS GOES TO SCHOOL4244 NETWORKS GOES TO SCHOOL

Hint to (3)

From Little’s law we had the equation

E[LQ] = λE[W ],

where LQ denoted the number of jobs waiting in the queue andW was the time a
job has to wait in the queue before starting being served. Derive a similar expres-
sion for L (the number of jobs in the system, queue and in service) and S (sojourn
time) instead of LQ andW .

Instead of an exponentially distributed repair time, now the repair time is deterministic
equal to 0.5.
(4) What is now the mean sojourn time of a television? Compare your answer to your

answer at c).

3.2.4. Extension of the single-server queue
Previously we drew the transition diagram and calculated the equilibrium probabilities of
theM |M |1 queue, which is a system where 1 job can be served at a time. In this set of
questions, we will consider three extensions.
(1) TheM |M |c queue is an extension of this model, where up to c jobs can get service

simultaneously. Draw the transition diagram of theM |M |c queue.

Hint

Suppose two jobs are getting service at the same time. The rate at which
servers move from having 2 to 1 jobs, is equal to 2 · µ.

Calculate the equilibrium probabilities of theM |M |c queue.
(2) In theM |M |1|k queue, only one job receives service at a time. The k in the name

denotes that there are finitely many spots to wait in the queue. At any moment, there
can be at most k jobs in this system. Whenever a job arrives and the system is full,
it will be blocked and it will leave forever. Draw the transition diagram, calculate the
equilibrium probabilities, and find the blocking probability; the probability that an
arbitrary job will be blocked.

(3) TheM |M |c|k model is a mix of theM |M |1|k and theM |M |c. In this system there
are c servers, hence c jobs can receive service simultaneously, and at most k jobs can
reside in the queue. Can you find the transition diagram, equilibrium probabilities and
blocking probability?
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3.3. Exercises on road traffic analysis

3.3.1. Applying Dijkstra's algorithm
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Figure 3.3.1. Road traffic network for Exercise 3.3.1

Figure 3.3.1 shows the possible routes to move from city 1 to city 7, and the associated
probabilities of not running into a traffic jam. Use Dijkstra’s algorithm to find the most reli-
able route of this road traffic network. What is the probability of not getting stuck in a traffic
jam?

3.3.2. Normal Distribution
Verify the claim in (2.2.1). Recall that T12 ∼ N (12, 16) and T13 ∼ N (15, 4). Use Table 4.0.2
on page 50.

3.3.3. Road Traffic Analysis
(1) LetX and Y be continuous random variables in R. Show that

E[X + Y ] = E[X] + E[Y ].

You may use that
∫
R f(x, y)dy = f(x) and

∫
R f(x, y)dx = f(y).

(2) Assume that the travel time distributions of the road traffic network in Figure 2.2.3
are known and are given in Table 3.3.1 below. Find the route between city 1 and 7

that has the lowest expected travel time.
(3) Suppose you have a job interview in 40 minutes. Find the probability that you arrive

on time if you take the route you found in part (2). What is this probability if you take
the route 1 → 3 → 5 → 7? What do you observe?
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Hint to (3)

From Little’s law we had the equation

E[LQ] = λE[W ],

where LQ denoted the number of jobs waiting in the queue andW was the time a
job has to wait in the queue before starting being served. Derive a similar expres-
sion for L (the number of jobs in the system, queue and in service) and S (sojourn
time) instead of LQ andW .

Instead of an exponentially distributed repair time, now the repair time is deterministic
equal to 0.5.
(4) What is now the mean sojourn time of a television? Compare your answer to your

answer at c).

3.2.4. Extension of the single-server queue
Previously we drew the transition diagram and calculated the equilibrium probabilities of
theM |M |1 queue, which is a system where 1 job can be served at a time. In this set of
questions, we will consider three extensions.
(1) TheM |M |c queue is an extension of this model, where up to c jobs can get service

simultaneously. Draw the transition diagram of theM |M |c queue.

Hint

Suppose two jobs are getting service at the same time. The rate at which
servers move from having 2 to 1 jobs, is equal to 2 · µ.

Calculate the equilibrium probabilities of theM |M |c queue.
(2) In theM |M |1|k queue, only one job receives service at a time. The k in the name

denotes that there are finitely many spots to wait in the queue. At any moment, there
can be at most k jobs in this system. Whenever a job arrives and the system is full,
it will be blocked and it will leave forever. Draw the transition diagram, calculate the
equilibrium probabilities, and find the blocking probability; the probability that an
arbitrary job will be blocked.

(3) TheM |M |c|k model is a mix of theM |M |1|k and theM |M |c. In this system there
are c servers, hence c jobs can receive service simultaneously, and at most k jobs can
reside in the queue. Can you find the transition diagram, equilibrium probabilities and
blocking probability?
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T12 T13 T23 T24 T34 T35 T45 T46 T57 T67

µ 12 10 2 7 4 4 3 10 19 5
σ2 1 9 1 9 4 1 1 16 1 4

Table 3.3.1. Tij denotes the travel time between city i and j in minutes and is normally
distributed with parameters µ and σ2.

Hint

Recall that the travel times are independent across the different roads. You can
use that ifX ∼ N (µX , σ2

X) and Y ∼ N (µY , σ2
Y ) are independent, it holds that

X + Y ∼ N (µX + µY , σ2
X + σ2

Y ).
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Table 3.3.1. Tij denotes the travel time between city i and j in minutes and is normally
distributed with parameters µ and σ2.
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X) and Y ∼ N (µY , σ2
Y ) are independent, it holds that

X + Y ∼ N (µX + µY , σ2
X + σ2

Y ).

CHAPTER 4

Solutions to  
the exercises

This chapter contains the solutions to some of the exercises  
in chapter 3.
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4.1. Probability theory

4.1.1. Conditional probabilities and expectations
(1)

P(X = 6) = P(you get a 6 when rolling a six-sided die) = 1

6
,

since it is equally probable to obtain any of the six sides.
(2) This is a conditional probability. You don’t know exactly what the outcome is but you

know that it is at least 4. This means that the die number is either a 4 or a 5 or a 6.
Yes now you have three possible outcomes, given the condition, not six. All three are
equally probable, hence the desired probability is equal to

P(X = 6|X ≥ 4) =
1

3
.

(3)

P(X = 6|X ≥ 4) =
P({X = 6} and {X ≥ 4})

P(X ≥ 4)
=

1
6
1
2

=
1

3
. (4.1.1)

(4)

E[X] =

6∑
i=1

iP(X = i) =
1

6

6∑
i=1

= 3.

(5)

E[]X|X ≥ 4] =

6∑
i=1

iP(X = i|X ≥ 4) = 5.

4.1.2. The exponential distribution
(1)

P(X ≥ t) = 1− P(X < t) = e−λt.

(2)
P(1 < X < 2) = P(X < 2)− P(X < 1) = e−λ − e−2λ.

(3)
E[X] =

1

λ
.

(4)
P(X > t+ u andX > t) = P(X > t+ u),

because ifX > t + u then it will also happen thatX > t. The rest follows by doing
one more computation.
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Figure 4.0.2. Values of distribution function of normal distribution
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4.2. Queueing theory

4.2.1. Mean queue length
(1)

∞∑
i=0

pi =

∞∑
i=0

(1− ρ)ρi = (1− ρ)

∞∑
i=0

ρi.

Geometric sum

For the geometric sum we have that

n∑
i=0

ωi =
1− ωn+1

1− ω
.

Hence we have that
∞∑
i=0

ωi = lim
n→∞

n∑
i=0

ωi = lim
n→∞

(
1− ωn+1

1− ω

)
,

and hence for ω ∈ (0, 1)
∞∑
i=0

ωi =
1

1− ω
.

Using this result the answer follows.
(2)

∞∑
i=0

i(1− ρ)ρi =
∞∑
i=1

i(1− ρ)ρi = ρ(1− ρ)
∞∑
i=1

iρi−1

= ρ(1− ρ)

(
∞∑
i=0

ρi
)′

= ρ(1− ρ)

(
1

1− ρ

)′

=
ρ

1− ρ
.

(3) Applying Little’s law we compute

E[LQ] =
ρ2

1− ρ
.

The random variable L denotes the number of customers in the system, which is
equal to the number of customers in the queue, i.e. LQ, plus one if there is a cus-
tomer being served. Hence

L = LQ + 1{Customer in service},
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where 1{Customer in service} is equal to 1 if there is a customer being served, which hap-
pens with probability ρ, and is equal to 0 otherwise. Hence

E[L] = E[LQ] + ρ =
ρ2

1− ρ
+ ρ =

ρ

1− ρ
.

4.2.2. Busy supermarket
(1) The flow diagram is

0 1 2 . . . n− 1 n . . .

λ = 1 λ = 1 λ = 1

µ = 1.33 µ = 1.33 µ = 1.33

(2)

P(L = 0) = p0 = ρ0(1− ρ) = (1− ρ) = (1− 1

1.33
) = 0.25

P(L = 1) = p1 = ρ1(1− ρ) =
1

1.33
(1− 1

1.33
) = 0.187

P(L = 2) = p2 = ρ2(1− ρ) = (
1

1.33
)2(1− 1

1.33
) = 0.140

(3)

1− P(L = 2)− P(L = 1)− P(L = 0) = 1− 0.25− 0.187− 0.140 = 0.423

4.2.3. Broken televisions
(1)

1− ρ = 1− 0.8

2
= 1− 0.4 = 0.6

(2)

E[L] = ρ

1− ρ
=

λ
µ

1− λ
µ

=
0.8
2

1− 0.8
2

= 0.66

(3)

Little’s law for L and S

Little’s law for the average number of jobs in the system and the the average
sojourn time reads

E[L] = λE[S].
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E[S] = E[L]
λ

=
0.66

0.8
= 0.833

(4)

E[S] = E[W ] + E[B] =
ρE[R]

1− ρ
+ E[B] =

ρ E[B2]
2E[B]

1− ρ
+ E[B] =

0.40.25

1− 0.4
+ 0.5 = 0.66

When we compare the answers of (3) and (4) we observe that the expected sojourn
time in the answer of (4) is smaller. This is because the service times are determin-
istic and there is less randomness.

4.3. Road Traffic Analysis

4.3.1. Dijkstra's algorithm
In order to use Dijkstra’s algorithm, we first need to formulate the problem as a shortest
route problem. This can be done by replacing the probabilities that are assigned to the
edges by the negative of their logarithm. Therefore, the most reliable route of the network
in Figure 3.3.1 can be determined by finding the shortest route of the network in Figure
4.3.1.

1
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.105

.693
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.357

.511

.223

.105

Figure 4.3.1. Most-reliable-route representation as a shortest-route model

Applying Dijkstra’s algorithm gives the route

1 → 2 → 4 → 3 → 6 → 7,
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from which it follows that

− log p17 = − log p12 − log p24 − log p43 − log p36 − log p67
= 0.223 + 0.105 + 0.163 + 0.051 + 0.105

= 0.647.

We conclude
p17 = e−0.647 ≈ 0.524.

Using this route, there is a probability of 52.4% of not getting stuck in a traffic jam.

4.3.2. Normal Distribution
Since P(T ≥ t) = 1− P(T < t), it is sufficient to show

P(T13 < 20) > P(T12 < 20).

We use that
Tij − µij

σij
∼ N (0, 1).

Table 4.0.2 (page 50) then gives

P(T13 < 20) = P
(
T13 − 15

2
<

5

2

)
≈ 0.9938

and
P(T12 < 20) = P

(
T12 − 12

4
< 2

)
≈ 0.9772,

from which the conclusion follows.

4.3.3. Road Traffic Network
(1)

E[X + Y ] =

∫

R

(∫

R
(x+ y)f(x, y)dy

)
dx

=

∫

R

(∫

R
xf(x, y)dy

)
dx+

∫

R

(∫

R
yf(x, y)dy

)
dx

=

∫

R

(∫

R
xf(x, y)dy

)
dx+

∫

R

(∫

R
yf(x, y)dx

)
dy

=

∫

R
x

(∫

R
f(x, y)dy

)
dx+

∫

R
y

(∫

R
f(x, y)dx

)
dy

=

∫

R
xf(x)dx+

∫

R
yf(y)dy

= E[X] + E[Y ],

where used in the third line that we can change the order of integration.
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In order to use Dijkstra’s algorithm, we first need to formulate the problem as a shortest
route problem. This can be done by replacing the probabilities that are assigned to the
edges by the negative of their logarithm. Therefore, the most reliable route of the network
in Figure 3.3.1 can be determined by finding the shortest route of the network in Figure
4.3.1.
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Figure 4.3.1. Most-reliable-route representation as a shortest-route model

Applying Dijkstra’s algorithm gives the route

1 → 2 → 4 → 3 → 6 → 7,
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(2) We learned from part (1) that we can simply apply Dijkstra’s algorithm to find the
route that minimises the sum of the means. This gives the path

1 → 3 → 4 → 6 → 7,

which has an expected travel time of 29 minutes.
(3) Using the hint, we find that

T17 = T13 + T34 + T46 + T67 ∼ N (29, 33).

Therefore,
P(T17 ≤ 40) = P

(
T17 − 29√

33
≤ 40− 29√

33

)
≈ 0.9722.

The alternative route is distributed as

T̃17 = T13 + T35 + T57 ∼ N (33, 11).

Therefore, the probability of arriving on time is

P(T̃17 ≤ 40) = P
(
T̃17 − 33√

11
≤ 40− 33√

11

)
= 0.9826.

We observe that the route with the lowest expected travel time is not the route that
gives us the highest probability of arriving on time for our job interview.
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